Üye Girişi
x

Giriş Başarılı.

Yanlış Bilgiler.

E-mail adresinizi doğrulamalısınız.

Facebook'la giriş | Kayıt ol | Şifremi unuttum
İletişim
x

Mesajınız gönderildi.

Mesajınız gönderilemedi.

Güvenlik sorusu yanlış.

Atomlar Ve Bazlar

Atomlar Ve Bazlar Hakkında Bilgi - Atomlar Ve Bazlar Nedir Özet


Araştırmalar



 ATOMLAR VE BAZLAR



Atomları, molekül içinde elektromanyetik çekim kuvvetine dayalı kimyasal bağlar birarada tutar. Her atomun başka bir atomla özel bir birleşme kabiliyeti vardır. Bu birleşmeler, atomların dış yörüngelerindeki elektronlar aracılığıyla yapılır. Her yörüngenin alabileceği maksimum elektron sayısı sabittir. Her atom en dıştaki yörüngesini, alabileceği maksimum elektron sayısına tamamlama gayreti içindedir. Bunun için ya en dış yörüngesindeki elektronları maksimum sayıya tamamlamak için başka atomlardan elektron alır ya da en dış yörüngesinde az sayıda elektron varsa, bunları bir başka atoma vererek önceden tamamlanmış olan bir alt yörüngeyi en dış yörüngesi haline getirir. Atomların bu genel eğilimi, birbirleri arasında yaptıkları kimyasal reaksiyonların temel itici gücünü oluşturur. Birbirlerinin bu eğilimlerine karşılıklı birebir cevap verebilecek atomlar yanyana geldiklerinde gereken enerji de sağlandığı takdirde bahsettiğimiz alışverişi gerçekleştirirler. Bu alışveriş sonucunda aralarında kimyasal bir bağ kurulur. Atomların aralarında bu şekildeki bir kimyasal bağla oluşturdukları yapıya molekül adı veriyoruz.
 
ÜÇ BENZER MOLEKÜL
SONUÇ: ÜÇ ÇOK FARKLI MADDE
Moleküller arasındaki birçok atomluk bir farklılık bile, çok değişik sonuçlar oluşturur. Örneğin şimdi vereceğimiz iki moleküle dikkatle bir bakın. İkisi de birbirine çok benziyor, ancak karbon ve hidrojen sayılarında çok ufak farklılıklar var. Ama sonuç iki zıt madde oluşturmaya yetişiyor:
C18H24O2  ve  C19H28O2
Bu moleküller nedir, bir tahminde bulunabiliyor musunuz? Hemen söyleyelim: Birincisi Östrojen, ikincisi ise Testostoren'dur. Yani biri kadınlık, diğeri de erkeklik hormonudur. Birkaç atomluk bir fark bile, hayret verici biçimde, cinsiyet farklılıklarına sebep olmaktadır. 
Şimdi, vereceğimiz formüle bir bakın:
C6H12O2
Yukarıdaki molekül, öströjen ve testeron hormonları moleküllerine ne kadar da benziyor, değil mi? Peki, bu molekül nedir? Başka bir hormon mu?
Hemen cevaplayalım: Bu molekül şeker molekülüdür. 
Aynı çeşit elementlerden oluşan bu üç molekül örneğinde, atom sayılarındaki farklılığın, ne derece farklı moddeler oluşturabildiğini çok net olarak gördük. Bir tarafta cinsiyet oluşturan hormonlar, bir diğer tarafta da temel besin maddesi şeker var.
Atomun içindeki dengelerin, parçacıkların birbirleriyle etkileşimlerinin ve atoma etki eden kuvvetlerin aralarındaki ilişkilerin bir tanesi bile tesadüfle açıklanamaz. Düşünün ki evrende var olan herşey atomlardan oluşmuştur. Bu atomlar öyle küçüktürler ki tek bir toplu iğne ucundaki atomların sayısı bile trilyonları aşmaktadır. O halde tüm evrendeki atomların sayısı telaffuz dahi edilemeyecek bir miktardadır. Bu kadar çok sayıdaki atomun herbirinin içinde, insan aklının sınırlarının çok ötesinde bir faaliyet vardır. Bu düzenli faaliyet ise, elbette ki tesadüfler neticesinde atomun içine girip yerleşmiş olamaz.
 
Evrenin Hammaddeleri ve Periyodik Cetvel
Doğada bulunan 92 adet ve laboratuvarlarda oluşturulan 17 adet farklı element "Periyodik Cetvel" diye adlandırılan bir tabloda, proton sayılarına gore yerleştirilmişlerdir.
İlk bakışta, Periyodik tablo birer, ikişer harflı alt ve üst köşelerinde rakamlar yazan kutucuklardan ibaret gibi gözükebilir. Ama, bu tabloya, şu an solumakta olduğumuz hava ve bedenimiz dahil tüm evren sığmaktadır.
Kimyasal Bağlar
Az önce bahsedildiği gibi, atomlar son yörüngelerindeki elektron sayılarını maksimuma tamamlama amacındadırlar. Bu amaçlarını da, diğer atomlarla 3 çeşit bağ kurarak gerçekleştirirler. Bunlar iyonik bağ, kovalent bağ ve metalik bağdır. Bu bağların özellikleri nedir ve nasıl kurulurlar, kısaca ele alalım.
 

Yukarıda bir kovalent bağ, aşağıda ise bir iyonik bağ örneği görülmektedir.
Atom, eğer dış yörüngesinde 4’ten az elektronu varsa bunları verme, 4’ten fazla elektronu varsa dışarıdan elektron alma eğilimindedir. Atomların bu şekilde birbirleriyle elektron alıp-vererek birleşmeleri “iyonik bağ” olarak isimlendirilir.
Eğer 2 tane atom, dış yörüngelerindeki elektronları ortak kullanırsa buna “kovalent bağ” denir. Kovalent bağın daha iyi anlaşılabilmesi için kolay bir örnek verelim: Hidrojen atomunda tek bir elektron vardır. Daha önce elektron yörüngelerinden bahsederken de belirttiğimiz gibi atomların ilk yörüngelerinde en fazla 2 elektron taşınabilir. Hidrojen atomu tek bir elektrona sahiptir ve elektron sayısını 2’ye çıkarıp kararlı bir atom olma eğilimindedir. Bu yüzden hidrojen atomu 2’nci bir hidrojen atomuyla kovalent bağ yapar. Yani, 2 hidrojen atomu da birbirlerinin tek elektronlarını 2. elektron olarak kullanır. Böylece H2 molekülü oluşur.
Eğer çok sayıda atom, birbirlerinin elektronlarını ortaklaşa kullanarak birleşiyorlarsa bu kez “metalik bağ” sözkonusudur.
Acaba tüm bu bağlarla, kaç farklı bileşik oluşabilmektedir?
Laboratuvarlarda, hergün yeni yeni bileşikler oluşturulmaktadır. Ancak şu an için yaklaşık 2 milyon bileşikten bahsetmek mümkündür.16 En basit kimyasal bileşik, hidrojen molekülü kadar ufak olabildiği gibi, milyonlarca atomdan oluşan bileşikler de vardır.
Bir element acaba en fazla kaç değişik bileşik oluşturabilir? Bu sorunun cevabı oldukça ilginçtir. Çünkü bir tarafta hiçbir elementle birleşmeyen bazı elementler (soygazlar) vardır. Diğer tarafta ise 1.700.000 bileşik oluşturabilen karbon atomu vardır. Toplam bileşik sayısının 2 milyon kadar olduğunu tekrar hatırlarsak, 109 elementin 108’i toplam 300.000 bileşik yapmaktadırlar. Ancak karbon olağanüstü bir şekilde tek başına tam 1.700.000 bileşik yapabilmektedir.
 



Yanyana Gelen Her Atom Hemen Reaksiyona Girseydi Ne Olurdu?
Az önce tüm evrenin 109 elementin atomlarının birbirleriyle reaksiyona girmeleri sonucu oluştuğunu söylemiştik. Burada, üzerinde dikkatle durulması gereken bir nokta vardır; o da, tepkimenin oluşabilmesi için çok önemli bir koşulun gerçekleşmesi gerektiğidir.
Örneğin, oksijenle hidrojen her biraraya geldiğinde su oluşmaz. Ya da demir havayla temas eder-etmez hemen paslanmaz. Eğer öyle olsaydı, katı ve parlak bir metal olan demir, birkaç dakika içinde yumuşak bir toz olan demir okside dönüşürdü. Durum böyle olmasaydı yeryüzünde metal diye bir madde kalmazdı. Çok tuhaf bir dünyada yaşardık. Yanyana gelen 2 maddenin atomları hemen tepkimeye girerdi. Böyle bir durumda ise, koltuğa bile oturmanız mümkün olamazdı. Çünkü koltuğu oluşturan atomlarla vücudunuzu oluşturan atomlar hemen tepkimeye girer ve koltuk-insan arası bir varlık (!) olurdunuz. Şüphesiz ki, böyle bir dünyada canlı hayatın varlığı sözkonusu bile olamazdı. Acaba, böyle bir sonucun yaşanmasını ne engellemektedir?
Bir örnekle açıklamak gerekirse, hidrojen ve oksijen molekülleri oda sıcaklığında çok yavaş tepkimeye girerler, yani “su” oda sıcaklığında çok yavaş oluşur. Ancak, ortamdaki sıcaklık arttığında moleküllerin enerjileri de artar ve tepkime hızlanır, yani su daha hızlı oluşur.
Bilimadamları bu durumu açıklayabilmek için, “Aktifleşme Enerjisi” diye adlandırdıkları bir kavram ortaya atmışlardır. Bu kavram, moleküllerin tepkimeye girebilmeleri için gerekli enerji sınırını ifade etmektedir. Su örneğinde görüldüğü gibi, hidrojen ve oksijen moleküllerinin tepkimeye girip suyu oluşturabilmeleri için, enerjilerinin aktifleşme enerjisinden yüksek olması gerekmektedir.






I. I. BAZLAR
I. I. A. BAZIN TANIMI, BULUNUŞU, ELDESİ VE ÖZELLİKLERİ

Baz kavramı, her zaman, asit kavramına bağlı kalmıştır. Baz, asidin karşıtıdır; ama baz olmadan hiçbir asit tepkimesi gerçekleşemez. Bazların asitlerle tepkimeye girmesiyle, gene önemli bir bileşik sınıfı olan tuzlar ve su oluşur. Bu bir nötrleşme (yansızlaşma) tepkimesidir; çünkü tepkime ürünü olan tuz artık ne asit, ne de baz özelliği taşıyan nötr ya da yansız bir bileşiktir.

1887’de Svante Arrhenius, sulu bir çözeltide iyonun var olduğu kuramını açıklarken, asit çözeltilerinin H+ iyonları, baz çözeltilerinin de OH- iyonları içerdiğini belirtmişti.1923’te Brönsted ve Lowry birbirlerinden bağımsız olarak, ama, aynı zamanda, daha genel bir tanım önerdiler: Asit, kimyasal tepkime sırasında, her zaman, bir proton vermeye elverişliyse, baz da bu protonun alıcısıdır. Bir maddenin baz olabilmesi için protonu “bağlayacak”, her hangi bir kimyasal bağda kullanılmamış bir elektron çifti taşıması gerekmektedir. Ama, yitirilecek protonu olduğu sürece asit olan madde, bu protonu yitirdiği an baza dönüşür. Gerçekten, protonunu yitiren asitte bir elektron çifti kalır. Asit – baz tepkimesi kavramına, “asit- baz çifti” ya da “aside eşlenik baz kavramı” eklenir. Böylece asetik asit (CH3 – COOH), asetat iyonunu (CH3 – COO) ya da eşlenik bazlarını karşılar. Amonyak (NH3) da, NH4+ asidinin karşıladığı bazdır.

NH3 + H2O ( NH4+ + OH-
Baz bir molekül (CH3 – NH2 ya da metilamin ), ya da OH- , CH3 – COO- gibi bir anyon olabilir. Bu asit- baz tepkimeleri, proton aktarımlarına dönüşürler. 1938’te, Lewis bu kuramı, asidin, bazın verdiği elektron çiftinin alıcısı olduğunu belirterek genelleştirmiştir. Bu durumda bir kovalans bağ oluşur. Ama bu sonuncu tanım, Brönsted’in baz tanımına yeni bir şey eklemez.

ASİT – BAZ TEPKİMESİ (BRÖNSTED)
B + AH ( BH + A
baz asit asit baz

Bazlar genel olarak molekülünde bir hidroksil grubu (OH ) ile en az bir metal atomu bulunan bileşikler olarak tanımlar; bu nedenle kimyasal açıdan metal hidroksitleri sayılır. Bunların çoğu suda çözünmeyen katı bileşiklerdir. Oysa bazıları, örneğin metal atomları içermeyen amonyağın (NH3 ) ve sodyum, potasyum gibi alkali metallerin hidroksitleri suda kolayca çözünür. Sanayi açısından büyük bir önem taşıyan bu bazlara alkaliler denir. Alkali terimi , “kül” anlamındaki Arapça bir sözcükten türetilmiştir. Çünkü bu bileşikler eskiden odun ve bitki küllerinden elde edilirdi. Gerçekten de alkalilerin küllü suyu andıran kendine özgü, acımsı bir tadı vardır. Bu çözeltiler deriye kaygan bir izlenim bırakır ve baz belirteci olarak kullanılan kırmızı turnusol kağıdının rengini maviye dönüştürür.

Kostik (yakıcı) alkali denen en kuvvetli bazlar, büyük bir dikkatle ve sakınılarak kullanılması gereken çok tehlikeli maddelerdir. İnsanın üzerine sıçradığında giysilerini parçalayan ve derisini ateş ve kaynar su gibi yakan bu maddelerin kazayla yutulması da yemek borusunun ve midenin delinmesiyle, hatta ölümle sonuçlanan ağır yanıklara yol açar. Sanayide çok önemli uygulamaları olan bu bileşikler arasında en çok kullanılanları sodyum hidroksit (sudkostik ) potasyum hidroksit (potas kostik) kalsiyum hidroksit (sönmüş kireç ) ve amonyum hidroksittir. (amonyaklı su)
En önemli alkalilerden biri olan sudkostik beyaz renkli bir bileşiktir. Ya ince levha ve çubuklar halinde katı olarak ya da suda eritilerek sıvı halde satışa sunulur. Sabun yapımında ve reyon denilen yapay ipekli kumaşların üretiminde çok önemli bir ham madde olan sudkostik, ayrıca pamuk ipliklerine sağlamlık ve parlaklık kazandırmak amacıyla pamuklu dokuma sanayisinde de kullanılır.
Potaskostiğin sanayideki en önemli kullanım alanı arap sabunu ve öbür temizlik maddelerinin üretimidir. Sönmüş kireçten inşaat sanayisinde sıva, çimento ve badana yapımında, ayrıca asitli toprakları nötrleştirmek için tarımda yararlanılır. Yaygın ama yanlış bir adlandırmayla kısaca amonyak olarak bilinen amonyaklı su evlerde en çok kullanılan temizlik maddelerinden biridir. Bütün yağ ve kirleri çözen bu bileşik özellikle banyo küveti, lavabo ve cam temizleyicileri bileşimine katılır. Gene kısaca karbonat tozu olarak ya da karbonat olarak bilinen sodyum di karbonat oldukça zayıf bir alkalidir. Kabartma tozlarının ve bazı köpüklü içeceklerin yapımında kullanılır; midedeki fazla asidi giderdiği için mide yanmalarına ve arı sokmasından dolayı meydana gelen ağrıya karşı etkilidir.
Dünyanın bir çok yerinde, özellikle ABD’nin batısında alkali topraklar denen geniş topraklar vardır. Bu bölgelerde çok az yağmur yağdığı için, çözünebilen tuzlar yağmur suyuna karışarak akıp gitmez ve alkaliler toprakta birikir. Alkali oranı çok yüksek olan topraklarda pek az bitki ve hayvanın yaşama şansı olduğundan, sonunda bu bölgeler çorak alanlara dönüşür.
NASIL HAZIRLANIRLAR?
Bazlar çeşitli yollarla hazırlanır. Bu yöntemlerin başlıcaları arasında, NaOH ve KOH için alkali klorürlerin elektroliz yoluyla ayrışmaları amonyağın (NH3 )doğrudan bileşimi kireç ve barit için, suyla “söndürmeyle” süren karbonatların ısıl- bozulmaları (piroliz) sayılabilir.
Bazlar çeşitli alanlarda kullanılmalarının yanı sıra bir ortamın PH’ını yükseltir ve ester hidrolizi tepkimelerini sonuçlandırır.


Bunun hakkında hemen düşüncelerinizi ya da sorunlarınızı yazabilirsiniz...

Hızlı Yorum Sistemi
x

Mesajınız gönderildi.

Mesajınız gönderilemedi.

Güvenlik sorusu yanlış.

İsim Email Şifre Kuran'daki ilk sure

Yorumlar :

Henüz yorum yapılmamış