Üye Girişi
x

Giriş Başarılı.

Yanlış Bilgiler.

E-mail adresinizi doğrulamalısınız.

Facebook'la giriş | Kayıt ol | Şifremi unuttum
İletişim
x

Mesajınız gönderildi.

Mesajınız gönderilemedi.

Güvenlik sorusu yanlış.

Çarpanlara Ayırma

Çarpanlara Ayırma Hakkında Bilgi - Çarpanlara Ayırma Nedir Özet


Araştırmalar






1-)ORTAK ÇARPAN PARANTEZİNE ALMA

A(X).B(X)+A(X).C(X)=A(X).[B(X)+C(X)
Ortak çarpan parantezine almaktaki amaç terim sayısını bire düşürmektir.Böylece ifadelerde sadeleştirme kolaylıkla yapılabilir.

ÖRNEKLER:
1-)ax+bx-cx ifadesini çarpanlara ayıralım!
ax+bx-cx üç terimlisinde ortak çarpan x’tir.buna göre;
ax+bx-cx=x.(a+b-c) olur.

2-)a b c+a b c+a bc ifadesini çarpanlarına ayıralım!
İfade üç terimlidir ve abc ortak çarpandır.O halde;

a b c+ab c+a bc=abc(ab+bc+a c)dir.

2-)GRUPLANDIRARAK ÇARPANLARA AYIRMA
Verilen ifadenin terimleri uygun şekillerde guplara ayrılır ve her grupta ortak bi çarpan bulunmaya çalışılır.

ÖRNEKLER:
1-)ax+bx+ay+by=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b).(x+y)

2-)x-ax+2x-2a=(x-ax)+(2x-2a)
=x(x-a)+2(x-a)
=(x-1).(a-1)
3-)ax-a-x+1=(ax-a)+(-x+1)
=a(x-1)-1(x-1)
=(x-1).(a-1)

Bunun hakkında hemen düşüncelerinizi ya da sorunlarınızı yazabilirsiniz...

Hızlı Yorum Sistemi
x

Mesajınız gönderildi.

Mesajınız gönderilemedi.

Güvenlik sorusu yanlış.

İsim Email Şifre Kuran'daki ilk sure

Yorumlar :

Henüz yorum yapılmamış