> 1 <
Kırık Link Bildir! #327314 10-01-2009 00:57 GMT-1 saat
Kara delik, astrofizikte, çekim alanı her türlü maddi oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, kütlesi büyük bir kozmik cisimdir. Kara delik, uzayda belirli nicelikteki maddenin bir noktaya toplanması ile meydana gelen bir nesnedir de denilebilir. Bu tür nesneler ışık yaymadıklarından kara olarak nitelenirler. Kara delikler 2 boyutludur yani hacmi yoktur. Kara deliklerin içinde zamanın ise yavaş aktığı yada akmadığı tahmin edilmektedir. Kara delikler genel görelilik(İvmeli devinim ile kütleçekimi açıklamasını özel göreliliğe birleştiren, genelleyen kuramdır.) kuramıyla tanımlanmışlardır. Doğrudan gözlemlenememekle birlikte, çeşitli dalga boylarını(Bir dalga örüntüsünün tekrarlanan birimleri arasındaki mesafedir.) kullanan dolaylı gözlem teknikleri sayesinde keşfedilmişlerdir. Bu teknikler aynı zamanda çevrelerinde sürüklenen oluşumların da incelenme olanağını sağlamıştır. Örneğin bir kara deliğin çekim alanına kapılmış maddenin kara delikçe yutulmadan önce müthiş bir ısı derecesine ulaştığı ve bu yüzden önemli miktarda x ışınları(dalgaboyu 10 ile 0,01 nm olan elektromanyetik dalgadır.) yaydığı saptanmıştır. Böylece bir kara delik kendisi ışık yaymasa da, çevresinde bu tür bir icraat yarattığı için varlığı saptanabilmektedir. Günümüzde, kara deliklerin varlığı, ilgili bilimsel topluluğun neredeyse tüm bireyleri tarafından onaylanarak kesinlik kazanmış durumdadır.
Sunuş :
Kara delik çekimsel tekillik denilen bir noktaya konsantre olmuş bir kütleye sahiptir. Bu kütle "kara deliğin ufku" denilen ve söz konusu tekilliği merkez alan bir küreyi oluşturur. Bu küre, kara deliğin uzayda kapladığı yer olarak da düşünülebilir. Kütlesi Güneş'imizin kütlesine eşit olan bir kara deliğin yarıçapı yalnızca yaklaşık 3 km' dir.
Yıldızlar-arası (milyonlarca km.) uzaklıklar söz konusu olduğunda, bir kara delik, herhangi bir kozmik cisim üzerinde, kendisiyle aynı kütleye sahip bir kozmik cisminkinden daha fazla bir çekim kuvveti uygulamaz; yani, kara delikleri karşı konulamaz bir kozmik aspiratör olarak düşünmemek gerekir. Örneğin Güneş'in yerinde onunla aynı kütleye sahip bir kara delik bulunsaydı, Güneş Sistemi'ndeki gezegenlerin yörüngelerinde herhangi bir değişim olmayacaktı.
Bir kara deliği doğrudan gözlemlemek imkânsızdır. Bilindiği gibi bir nesnenin görülebilmesi için, kendisinden ışık çıkması veya kendisine gelen ışığı yansıtması gerekir; oysa kara delikler çok yakınından geçen ışıkları bile yutmaktadırlar.Kara delik, üzerine düşen yakınlardaki maddenin son derece ısınmış olmasından ve güçlü bir şekilde X ışını yaymasından anlaşılmaktadır. Böylece, gözlemler dev veya ufak boyutlardaki bu tür cisimlerin varlığını ortaya koymaktadır. Bu gözlemlerin kapsadığı ve genel görelilik kuramına uyan cisimler yalnızca kara deliklerdir.
Tarihçe :
Kara delik kavramı ilk olarak 18.yy. sonunda, Newton'un evrensel çekim kanunu kapsamında doğmuştur denebilir. Fakat o dönemde mesele yalnızca kaçış hızı( evrendeki bir kütlenin kendisine uyguladığı yerçekiminden kurtulmak için ihtiyacı olan hızdır.Bu hız dünyamız için saniyede 11.23 km'dir.) ışık hızından daha büyük olmasını sağlayacak derecede kütleli cisimlerin var olup olmadığını bilmekti. Dolayısıyla kara delik kavramı ancak 20.yy.'ın başlarında ve özellikle Albert Einstein'ın genel görelilik kuramının ortaya atılmasıyla fantastik bir kavram olmaktan çıkmıştır. Einstein'ın çalışmalarının yayımlanmasından kısa süre sonra, Karl Schwarzschild tarafından, Einstein alan denklemlerinin merkezî bir kara deliğin varlığını içeren bir çözümü yayımlanmıştı. Bununla birlikte kara delikler üzerine ilk temel çalışmalar, varlıkları hakkındaki ilk sağlam belirtilerin gözlemlerini izleyen 1960'lı yıllara dayanır. Kara delik içeren bir cismin ilk gözlemi, 1971'de Uhuru uydusu tarafından yapıldı.Uydu Kuğu takımyıldızının en parlak yıldızı olan Cygnus X-1 çift yıldızında(birbirinin merkezi kütlelerinin yörüngesinde dönen iki yıldızdan oluşan bir yıldız sistemidir.) bir X ışınları kaynağı olduğunu saptamıştı. Fakat "kara delik" terimi daha önceden, 1960'lı yıllarda Amerikalı fizikçi Kip Thorne vasıtasıyla ortaya atılmıştı. Bu terimin terminolojiye yerleşmesinden önce ise kara delikler için Schwarzschild cismi ve kapalı yıldız terimleri kullanıldı.
Özellikleri :
Doğrudan gözlemlenmesinin çok güç olmasıyla ve merkezî bölgesinin fizik kuramlarıyla tatminkâr biçimde tanımlanamaz oluşuyla nitelenir. Buna karşılık, uygulanan çeşitli dolaylı yöntemler sayesinde, yakın çevresinde hüküm süren fiziksel koşullar ve çevresi üzerindeki etkisi mükemmel biçimde tanımlanabilmektedir. Öte yandan kara delikler çok az sayıdaki parametrelerle(Değişken, bilgisayar ve matematik biliminde, sembolik bir ifade veya bir niceliği (miktarı) ifade etmek için kullanılan semboldür.) tanımlanmaları bakımından şaşkınlık verici nesnelerdir. Yaşadığımız evrendeki tanımları yalnızca üç parametreye bağlıdır: Kütle, elektriksel yük ve açısal momentum(Bir cismin çizgisel momentum vektörünün her hangi bir noktaya göre dönmesine açısal momentum denir.). Kara deliklerin tüm diğer parametreleri (boyu, biçimi vs.) bunlarla belirlenir. Bir kıyaslama yapmak gerekirse, örneğin bir gezegenin tanımlanmasında yüzlerce parametre söz konusudur (kimyasal bileşim,elementlerin farklılaşması, taşınım, atmosfer vs.) Bu yüzden 1967'den beri kara delikler yalnızca bu üç parametreyle tanımlanırlar ki, bunu da 1967'de Werner Israel tarafından ortaya atılan "saçsızlık kuramı"na(Saçsızlık teoremine göre; bir cisim kara delik oluşturacak şekilde çökerken büyük miktarda enformasyonun kaybolduğunu gösterir.) borçluyuz. Bu, uzun mesafeli temel kuvvetlerinin(Veya Temel etkileşim parçacıkların birbirleri ile etkileşimlerinin işleyiş biçimidir.) yalnızca kütleçekim (kütlesi bulunan maddelerin birbirlerine doğru ivmelenme eğilimidir.) ve elektromanyetizm oluşunu da açıklamaktadır; kara deliklerin ölçülebilir özellikleri yalnızca, bu kuvvetleri tanımlayan parametrelerle, yani kütle, elektriksel yük ve açısal momentumla verilir.
Kısaca Açıklamaları:
Schwarzschild Kara deliği : Açısal momentum ve elektriksel yük sıfır değerliyse "Schwarzschild kara deliği" türü söz konusudur. Bu ad 1916'da bu tür nesnelerin varlığı fikrini Einstein alan denklemlerinin çözümleri olarak ortaya atmış Karl Schwarzschild'a ithafen verilmiştir.
Reissner-Nordstörm Kara Deliği: Kara deliğin elektriksel yükü sıfır olmayıp açısal momentumu sıfır olduğu takdirde "Reissner-Nordström kara deliği" türü sözkonusu olur. Bilinen hiçbir süreç böyle sürekli bir elektriksel yük içeren sıkışmış bir cisim üretmek olanağı vermediğinden, bu tür kara delikler varsa bile, astrofizikte pek ilgi odağı olmamaktalar. Bu elektriksel yük, karadeliğin çevresinden alacağı zıt elektrik yüklerinin emilmesiyle zamanla dağılabilir. Sonuç olarak, "Reissner-Nordström kara deliği" doğada mevcut olma olasılığı pek bulunmayan teorik bir cisimdir.
Kerr kara deliği:Kara deliğin bir açısal momentumu olup (kendi ekseni etrafında dönüyorsa) elektriksel yükü olmadığı takdirde "Kerr kara deliği" türü sözkonusu olur. Bu ad, 1963'te bu tür cisimleri tanımlayan formülü bulmuş olan Yeni Zelanda'lı matematikçi Roy Kerr'in adına ithafen verilmiştir. Reissner-Nordström ve Schwarzschild kara delik türlerinin aksine, Kerr kara deliği türü astrofizikçiler için önemli bir ilgi odağı olmuştur; çünkü kara deliklerin oluşum ve evrim örnekleri onların çevrelerindeki maddeyi bir "katılım diski" aracılığıyla emme eğiliminde olduklarını ve maddelerin katılım diskine kara deliğin dönüş yönünde spiral çizerek düştüklerini göstermektedir. Böylece madde, kendisini yutan kara deliğin açısal momentumuyla bir ilişki halinde olmaktadır. Bu durumda, astronominin ilgilenebileceği kara delikler yalnızca Kerr kara delikleridir.
Kerr-Newman kara: Kerr kara deliğinin elektriksel yüke sahip olduğu türdür. Buna Kerr-Newman kara deliği türü denir. Bu türe de var olma olasılığı çok zayıf olduğundan pek ilgi gösterilmemektedir.
Olay ufku
Işık ve maddenin artık kaçamadığı bölgeyi sınırlayan kuşağa olay ufku adı verilir. Olay ufku, herhangi bir fiziksel incelemede bulunamadığımız bir uzay parçasıdır. Ne olay ufkundan ötesini bilinen yasalarla açıklama olanağı vardır, ne de orada ne olup bittiğini bilmenin bir yolu vardır. Bir yıldızın olay ufku, yıldızın çökmeden önceki kütlesiyle orantılıdır. Örneğin kütlesi 10 güneş kütlesi olan bir yıldız içe çöküp kara delik haline geldiğinde çapı 60 km. olan bir olay ufkuna sahip olur. Bir kara delik madde yuttukça olay ufkunu genişletir, olay ufku genişledikçe de daha güçlü çekim alanına sahip olur. Kara deliğin olay ufkunda teorik olarak zaman tümüyle durmaktadır. Kimi kara deliklerde iki olay ufku vardır.
Kimileri "olay ufku" terimi yerine kara deliğe pek uygun olmamakla birlikte kara deliğin yüzeyi terimini kullanırlar. (Terimin uygun olmamasının nedeni, bir gezegen yada yıldızdaki gibi katı ve gazlardan oluşan bir yüzeyinin olmamasıdır.) Fakat burada birtakım özel nitelikler gösteren bir bölge söz konusu değildir; bir gözlemci kara deliğe ufku aşacak kadar yaklaşmış olabilseydi, kendisine yüzey izlenimi sağlayacak hiçbir özellik yada değişim hissedemeyecekti. Buna karşılık geri dönme girişlerinde bulunduğunda, artık bu bölgeden kaçamayacağının farkına varmış bulunacaktı. Bu, adeta "dönüşü olmayan nokta"dır. Bu durum, akıntısı güçlü bir denizde, akıntıdan habersiz bir yüzücünün durumuna benzetilebilir.
Öte yandan olay ufkunun sınırına yaklaşmış bir gözlemci, kara delikten yeterince uzaktaki bir gözlemciye kıyasla, zamanın farklı bir şekilde aktığının farkına varacaktır. Kara delikten uzakta olan gözlemcinin diğerine düzenli aralıklarla (örneğin birer saniye arayla) ışık işaretleri yolladığını varsayalım: Kara deliğe yakın gözlemci bu işaretleri hem daha enerjetik (ışığın kara deliğe düşmek üzere yaklaştıkça maviye kayması sonucuyla bu ışık işaretlerinin frekansı daha yüksek olacaktır) hem de ardışık işaretlerin aralarındaki zaman aralığı daha kısalmış (birer saniyeden daha az) olarak alacaktır. Yakın gözlemci, uzaktakine oranla zamanın daha hızlı aktığı izleminde olacaktır. Uzaktaki gözlemci de aksine, diğerinde meydana gelen şeylerin gitgide daha yavaş seyrettiğini görecek, zamanın daha yavaş aktığı izleniminde olacaktır.
Uzaktaki gözlemci kara deliğe bir nesnenin düştüğünü görmesi halinde, ona nazaran "çekimsel kızıla kayma" ve "zamanın genleşmesi" fenomenleri birleşmiş durumda olacaktır : Nesneden çıkan işaretler gitgide kızıl, gitgide parlak (uzak gözlemciye varmadan önce gitgide artan enerji kaybıyla çıkarılan ışık) ve gitgide aralıklı olacaktır. Yani pratikte, gözlemciye varan ışık fotonlarının sayısı, gitgide hızla azalacaktır ve nesnenin kara deliğe gömülüp görünmez olmasının ardından tükenecektir. Nesnenin henüz olay ufku sınırında hareketsiz durduğunu gören uzaktaki gözlemcinin onun düşmesini engellemek üzere olay ufkuna yaklaşması boşuna olacaktır.
Kara deliğin "tekilliği"ne yaklaşan bir gözlemciyi etkilemeye başlayan etkilere gelgit etkileri denir.Bu etkiler kütleçekim alanının homojen olmayan bir yapıya sahip olması nedeniyle nesnenin biçimsizleşmesine (doğal biçimini kaybetmesine) yol açarlar. Bu gelgit etkileri bölgesi dev kara deliklerde tümüyle olay ufkunda yer alır; fakat özellikle "yıldızsal kara delik"lerde olay ufkunun sınırını da aşarak etkide bulunur. Dolayısıyla yıldızsal kara deliğe yaklaşan bir astronot daha olay ufkuna geçmeden parçalanacakken, dev kara deliğe yaklaşan bir astronot, daha sonra gelgit etkileri ile yok edilecek olmakla birlikte, olay ufkuna bir güçlükle karşılaşmadan giriş yapacaktır.
Tekillik
Bir kara deliğin merkezinde kütleçekim alanının ve uzay bükülmelerinin ("eğim") sonsuz hale geldikleri bir bölge yer alır. Bu bölge "çekimsel tekillik" olarak adlandırılır. Bu bölge, genel görelilik kuramı uzay-zaman eğiminin sonsuz olduğu bölgeleri tanımlayamadığı için, genel görelilik kuramı çerçevesinde pek iyi tanımlanamamıştır. Zaten genel görelilik kuramı, kuantum kaynaklı kütleçekim etkilerini genel olarak göz önünde bulunduran bir kuram değildir. Uzay-zaman eğimi, sonsuza doğru eğrildiğinde, zorunlu olarak kuantum tabiatlı etkilere tâbi olmaktadır. Sonuç olarak, kütleçekimsel tekillikleri doğru bir biçimde tanımlayabilecek durumdaki tek kuram, tüm kuantum etkilerini göz önünde bulunduran bir kütleçekim kuramı olabilir.
Dolayısıyla halihazırda kütleçekimsel tekilliğin tanımı yapılamamış durumdadır. Bununla birlikte, şu biliniyor ki, nasıl kara deliğe girip içine yerleşmiş madde dışarı çıkamıyorsa, kütleçekimsel tekillik de kara deliğin içine yerleştikçe kara deliğin dışını etkileyememektedir. Kütleçekimsel tekillikler onları tanımlamakta aciz kalışımızdan dolayı gizemlerini korumayı sürdürseler de ve genel görelilik kuramı tüm kütleçekimsel fenomenleri tanımlamada yeterli olmasa da, bütün bunlar, kara deliğin bizim tarafımızda bulunan olay ufkundan hareketle onları tanımlamamıza bir engel oluşturmamaktadır.
Kara Deliklerin Oluşumu:
Kara deliklerin var olma olasılığı yalnızca genel görelilik kuramına ait bir sonuç değildir; kütleçekimi konu alan hemen hemen tüm diğer gerçekçi fizik kuramları da onların varlığını muhtemel görmektedir. Diğer kütleçekim kuramları gibi genel görelilik kuramı da kara deliklerin varlığını öngörmekle kalmayıp, onların uzayın bir bölgesinde sıkışmış maddeden oluşmuş olacağını öngörmektedir. Örneğin Güneş'imiz yarıçapı yaklaşık üç kilometre olan bir küre içine (yani ebatlarının dört milyonda biri kadar bir hacme) sıkıştırılmış olsaydı, bir kara delik haline gelirdi. Hatta Güneş'imizi 1cm³(santimetreküp) hacmine sıkıştırabilseydik, bu kez 1cm³'lük bir karadelik yapmış olurduk. Fakat bu durumda sistemimizdeki gezegenlerin yörünge hareketlerinde bir değişiklik olmayacaktı; yani Güneş Sistemi'mizdeki gezegenler bu 1cm³'lük kara deliğin Güneş'inkine eş çekim kuvvetinde, yörüngelerinde dönmeye devam edeceklerdi. Bir başka örnekle, Dünya'mız birkaç santimetre küplük bir hacim içine sıkıştırılmış olsaydı, o da bir kara delik haline gelecekti.
Astrofizikte kara delik bir çekimsel içe çökmenin son aşaması olarak ele alınır. Yıldızların evrim süreçlerinin sonları, sahip oldukları kütleye göre belirlenir. Evrim sürecinin son aşamasına yaklaşmış yıldızlarda, maddenin sıkışması sonunda, kütlelerine göre, iki hal sözkonusu olur; bunlar ya ak cüce haline dönüşürler ya da sonradan kara deliğe dönüşebilecek nötron yıldızı (Yıldızların yaşamlarının son bulabileceği biçimlerden biridir.)haline dönüşürler. Ak cüce halinde, ak cüceyi kütleçekime karşı denge halinde tutan elektronların yozlaşma basıncıdır.Nötron yıldızı halinde ise nükleonların (Fizikte bir nükleon (çekincik), nötron (ılıncık) ve proton (önelcik)'un ortak ismidir.)yozlaşma basıncı sözkonusu değildir, denge halini sağlayan "güçlü etkileşim"( Kuarklar(Evrendeki kütlenin büyük bir kısmını olusturan madde kuarklardan insa edilmistir.) ve gluonlar(Parçacık fiziğinde Gluon, temel parçacıklardandır) arasındaki etkileşim güçlü etkileşim olarak adlandırılır .)dir. Kara delik ak cücelere ilişkin içe çökmeyle oluşamaz; bu çökme sırasında yıldızı oluşturan çok ağır nükleonlar oluşur. Açığa çıkan enerji yıldızı dağıtmaya yeterlidir. Fakat evrim sürecinde dönüşme eşiğindeki yıldız, belirli bir kritik kütleyi aştığında (kütlesi yeterince büyük olduğunda), eğer kütleçekim gücü basınç etkisini aşabilmeye yetecek derecede büyükse bir kara delik oluşabilir. Bu durumda bilinen hiçbir kuvvet, dengeyi sağlamaya yetmez sözkonusu cisim tümüyle içe çöker.
Bir nötron yıldızına, belirli bir kritik kütleye ulaşana kadar, bir başka yıldızdan çıkan maddenin katılımıyla oluşabilir.
Bir nötron yıldızının başka bir nötron yıldızıyla birleşmesiyle oluşabilir .
Büyük bir yıldızın kalbinin doğrudan kara delik halinde içe çökmesiyle oluşabilir.
Kısaca Açıklamaları :
Yıldızsal Kara Delikler: Yıldızsal kara delikler birkaç güneş kütlesi kadar bir kütleye sahiptirler. Ölmekte olan bir yıldız, eğer Güneş'imizin üç mislinden daha ağırsa, nötron yıldızı düzeyinde kalamaz, çekirdeğindeki tepkime ve yoğunluk artması devam eder ve "kara delik" haline gelir. Yıldızsal kara delik büyük (başlangıç olarak yaklaşık 10 güneş kütlesi kadar kütleli veya daha fazla kütleli) bir yıldızın kalıntısının (artık maddesinin) çekimsel içe çökmesinin ardından doğarlar.
Dev kara delikler: Dev kara delikler birkaç milyon ile birkaç milyar güneş kütlesi arasında değişen bir kütleye sahiptir. Galaksilerin merkezinde bulunurlar ve varlıkları bazen akışların ve X ışınımının oluşmasına yol açar. Bu yüzden bu galaksi çekirdekleri, yıldızların üst üst yer almasından oluşan normal parlaklığa kıyasla daha parlak hale gelirler ve aktif galaksi çekirdekleri adını alırlar. Galaksimiz Samanyolu da böyle bir kara delik içerir ve bu kara deliğe yakın yıldızların son derece hızlı hareket ettiklerinin gözlemlenmesi bu bulguyu doğrular.
Orta kara delikler: Orta kara delikler yakın zamanlarda keşfedilmiş olup, kütleleri 100 güneş kütlesi ile 10.000 güneş kütlesi aralığında değişir.
İlksel kara delikler: Mikro kara delikler ya da kuantum kara delikleri de denilen "ilksel kara delikler" çok küçük boyutlarda olan kara deliklerdir. Bunlara ilksel adının verilme nedeni, Büyük Patlama sırasında oluştuklarının sanılmasındandır.1970'li yıllarda ünlü fizikçilerden Stephen Hawking ve Bernard Carr kara deliklerin ilksel kozmosdaki oluşum mekanizması üzerine araştırmalarda bulundular ve kara delik kavramını geliştirerek "mini kara delik" adı verilen, yıldızsal kara deliklere nazaran son derece küçük kara deliklerin bol miktarda bulunduğu sonucuna vardılar. Bu kara deliklerin kütleleri bakımından yoğunlukları ve dağılımları henüz bilinmemekte.
Tekillik kuramları
Kara delikler hakkındaki temel meselelerden biri hangi koşullar altında oluştukları meselesidir. İlk zamanlar, kara deliklerin oluşum koşullarının son derece özel olmasından dolayı, pek çok olma şanslarının çok az olduğu düşünülüyordu. Fakat, Stephen Hawking ve Roger Penrose'a borçlu olduğumuz bir dizi matematik teoremleri hiçde öyle olmadığını gösterdi. Kara deliklerin meydana gelmesi son derece farklı koşullarda oluşabilmekte olup, bir çeşitlilik gösteriyordu. Bu iki bilim adamının sözkonusu alandaki kuşkuya yer bırakmayan çalışma ve kuramları "tekillik kuramları" olarak adlandırılmıştır. Bu kuramlar, 1970'li yılların başlarında, yani henüz kara deliklerin varlığını doğrulayan hiçbir gözlemin yapılmamış olduğu bir dönemde ortaya konulmuştur. Sonraki gözlemler, kara deliklerin evrende gerçekten çok sık bulunan cisimler olduğunu doğrulamış bulunmaktadır.
Bertuğ Berkay YEMEN
Bunu ilk beğenen siz olun
Hata Oluştu